博客
关于我
2020编码大赛(4)LZW压缩算法
阅读量:607 次
发布时间:2019-03-12

本文共 677 字,大约阅读时间需要 2 分钟。

LZW压缩算法

LZW压缩算法是一种通用且有效的可变长度编码技术,常用于文本和数据压缩。它通过使用动态构建字典的机制来减少数据冗余,从而提高压缩率。初始化阶段,字典包含了255个可能的ASCII字符(0-255),随着压缩过程的进行,字典会逐步扩展。

实际编码方式

  • 基本编码

    • 0-254的字符使用8位编码表示。
    • 255及以上的字符使用9位编码表示。
  • 扩展编码

    • 在需要使用9位编码时,算法会在编码结果前加上一个255的特殊码,确保解压时能够正确识别字符扩展的长度。
  • 特殊处理

    • 添加/0编码确保算法在不同环境中都能正常运行。
  • 压缩流程

    压缩过程大致分为以下几个步骤:

  • 初始化字典:放入初始的255个字符。
  • 查找与扩展字典:逐步将新的字符序列添加到字典中,扩大字典容量。
  • 编码转换:将字符转换为字典ID序列,并用变长编码将这些ID转成最终的二进制流。
  • 代码实现

    代码主要包含以下几个关键部分:

  • 编码写入函数:将压缩后的二进制数据写入输出流。
  • 解码读取函数:从输入流中读取压缩数据并还原原文。
  • 字典管理:通过哈希表(map结构)存储当前已定义的字符序列及其对应的ID。
  • 压缩率

    LZW算法的压缩率通常在1024:420左右,这意味着压缩后的文件大小约为原数据的42%以内。

    注意事项

    • 边界处理:在检测到输入流结束时,确保能正确编码剩余的未处理字符。
    • 增强通用性:通过特殊编码机制(如/0编码),使算法能适用于各种文件类型。

    LZW压缩算法因其简单性和良好的压缩性能,在数据压缩领域仍然具有重要的地位。通过合理管理字典并优化编码策略,可以进一步提升压缩效果。

    转载地址:http://lloxz.baihongyu.com/

    你可能感兴趣的文章
    NLP学习笔记:使用 Python 进行NLTK
    查看>>
    NLP度量指标BELU真的完美么?
    查看>>
    NLP的不同研究领域和最新发展的概述
    查看>>
    NLP的神经网络训练的新模式
    查看>>
    NLP采用Bert进行简单文本情感分类
    查看>>
    NLP问答系统:使用 Deepset SQUAD 和 SQuAD v2 度量评估
    查看>>
    NLP项目:维基百科文章爬虫和分类【02】 - 语料库转换管道
    查看>>
    NLP:使用 SciKit Learn 的文本矢量化方法
    查看>>
    nmap 使用方法详细介绍
    查看>>
    Nmap扫描教程之Nmap基础知识
    查看>>
    nmap指纹识别要点以及又快又准之方法
    查看>>
    Nmap渗透测试指南之指纹识别与探测、伺机而动
    查看>>
    Nmap端口扫描工具Windows安装和命令大全(非常详细)零基础入门到精通,收藏这篇就够了
    查看>>
    NMAP网络扫描工具的安装与使用
    查看>>
    NMF(非负矩阵分解)
    查看>>
    nmon_x86_64_centos7工具如何使用
    查看>>
    NN&DL4.1 Deep L-layer neural network简介
    查看>>
    NN&DL4.3 Getting your matrix dimensions right
    查看>>
    NN&DL4.7 Parameters vs Hyperparameters
    查看>>
    NN&DL4.8 What does this have to do with the brain?
    查看>>